Subgraph-aware Few-Shot Inductive Link Prediction via Meta-Learning

نویسندگان

چکیده

Link prediction for knowledge graphs aims to predict missing connections between entities. Prevailing methods are limited a transductive setting and hard process unseen The recently proposed subgraph-based models provide alternatives links from the subgraph structure surrounding candidate triplet. However, these require abundant known facts of training triplets perform poorly on relationships that only have few triplets. In this paper, we propose Meta-iKG, novel meta-learner few-shot inductive relation reasoning. Meta-iKG utilizes local subgraphs transfer subgraph-specific information rapidly learn transferable patterns via meta-gradients. way, find model can quickly adapt using handful with settings. Moreover, introduce large-shot updating procedure ensure our generalize well both relations. We evaluate benchmarks sampled NELL Freebase, results show outperforms currently state-of-the-art in scenarios standard

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Few-Shot Learning with Meta Metric Learners

Existing few-shot learning approaches are based on either meta-learning or metriclearning, which would suffer if the tasks have varying numbers of classes and/or the tasks diverge significantly. We propose meta metric learning to deal with the limitations of the existing few-shot learning approaches. Our meta metric learning approach consists of two components, task-specific learners that explo...

متن کامل

Meta-SGD: Learning to Learn Quickly for Few Shot Learning

Few-shot learning is challenging for learning algorithms that learn each task in isolation and from scratch. In contrast, meta-learning learns from many related tasks a meta-learner that can learn a new task more accurately and faster with fewer examples, where the choice of meta-learners is crucial. In this paper, we develop Meta-SGD, an SGD-like, easily trainable meta-learner that can initial...

متن کامل

Few-shot Learning

Though deep neural networks have shown great success in the large data domain, they generally perform poorly on few-shot learning tasks, where a classifier has to quickly generalize after seeing very few examples from each class. The general belief is that gradient-based optimization in high capacity classifiers requires many iterative steps over many examples to perform well. Here, we propose ...

متن کامل

Meta-Learning for Semi-Supervised Few-Shot Classification

In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...

متن کامل

One-Shot Visual Imitation Learning via Meta-Learning

In order for a robot to be a generalist that can perform a wide range of jobs, it must be able to acquire a wide variety of skills quickly and efficiently in complex unstructured environments. High-capacity models such as deep neural networks can enable a robot to represent complex skills, but learning each skill from scratch then becomes infeasible. In this work, we present a meta-imitation le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2022.3177212